Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.277
1.
Phys Chem Chem Phys ; 26(19): 14228-14243, 2024 May 15.
Article En | MEDLINE | ID: mdl-38690612

The development of chromophores that absorb in the near-infrared (NIR) region beyond 1000 nm underpins numerous applications in medical and energy sciences, yet also presents substantial challenges to molecular design and chemical synthesis. Here, the core bacteriochlorin chromophore of nature's NIR absorbers, bacteriochlorophylls, has been adapted and tailored by annulation in an effort to achieve absorption in the NIR-II region. The resulting bacteriochlorin, Phen2,1-BC, contains two annulated naphthalene groups spanning meso,ß-positions of the bacteriochlorin and the 1,2-positions of the naphthalene. Phen2,1-BC was prepared via a new synthetic route. Phen2,1-BC is an isomer of previously examined Phen-BC, which differs only in attachment via the 1,8-positions of the naphthalene. Despite identical π-systems, the two bacteriochlorins have distinct spectroscopic and photophysical features. Phen-BC has long-wavelength absorption maximum (912 nm), oscillator strength (1.0), and S1 excited-state lifetime (150 ps) much different than Phen2,1-BC (1292 nm, 0.23, and 0.4 ps, respectively). These two molecules and an analogue with intermediate characteristics bearing annulated phenyl rings have unexpected properties relative to those of non-annulated counterparts. Understanding the distinctions requires extending concepts beyond the four-orbital-model description of tetrapyrrole spectroscopic features. In particular, a reduction in symmetry resulting from annulation results in electronic mixing of x- and y-polarized transitions/states, as well as vibronic coupling that together reduce oscillator strength of the long-wavelength absorption manifold and shorten the S1 excited-state lifetime. Collectively, the results suggest a heuristic for the molecular design of tetrapyrrole chromophores for deep penetration into the relatively unutilized NIR-II region.


Porphyrins , Spectroscopy, Near-Infrared , Porphyrins/chemistry , Naphthalenes/chemistry , Molecular Structure , Bacteriochlorophylls/chemistry
2.
J Chromatogr A ; 1722: 464866, 2024 May 10.
Article En | MEDLINE | ID: mdl-38581976

The detection of aromatic aldehydes, considered potential genotoxic impurities, holds significant importance during drug development and production. Current analytical methods necessitate complex pre-treatment processes and exhibit insufficient specificity and sensitivity. This study presents the utilization of naphthalenediimide as a pre-column derivatisation reagent to detect aromatic aldehyde impurities in pharmaceuticals via high-performance liquid chromatography (HPLC). We screened a series of derivatisation reagents through density functional theory (DFT) and investigated the phenomenon of photoinduced electron transfer (PET) for both the derivatisation reagents and the resulting products. Optimal experimental conditions for derivatisation were achieved at 40 °C for 60 min. This approach has been successfully applied to detect residual aromatic aldehyde genotoxic impurities in various pharmaceutical preparations, including 4-Nitrobenzaldehyde, 2-Nitrobenzaldehyde, 1,4-Benzodioxane-6-aldehyde, and 5-Hydroxymethylfurfural. The pre-column derivatisation method significantly enhanced detection sensitivity and reduced the limit of detection (LOD), which ranged from 0.002 to 0.008 µg/ml for the analytes, with relative standard deviations < 3 %. The correlation coefficient (R2) >0.998 demonstrated high quality. In chloramphenicol eye drops, the concentration of 4-Nitrobenzaldehyde was measured to be 8.6 µg/mL below the specified concentration, with recoveries ranging from 90.0 % to 119.2 %. In comparison to existing methods, our work simplifies the pretreatment process, enhances the sensitivity and specificity of the analysis, and offers comprehensive insights into impurity detection in pharmaceutical preparations.


Aldehydes , Drug Contamination , Imides , Limit of Detection , Naphthalenes , Chromatography, High Pressure Liquid/methods , Naphthalenes/chemistry , Naphthalenes/analysis , Aldehydes/analysis , Aldehydes/chemistry , Imides/chemistry , Mutagens/analysis , Mutagens/chemistry , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Benzaldehydes/chemistry , Benzaldehydes/analysis
3.
Anal Chim Acta ; 1305: 342582, 2024 May 29.
Article En | MEDLINE | ID: mdl-38677838

BACKGROUND: Detecting and neutralizing Pd2+ ions are a significant challenge due to their cytotoxicity, even at low concentrations. To address this issue, various chemosensors have been designed for advanced detection systems, offering simplicity and the potential to differentiate signals from different analytes. Nonetheless, these chemosensors often suffer from limited emission response and complex synthesis procedures. As a result, the tracking and quantification of residual palladium in biological systems and environments remain challenging tasks, with only a few chemosensing probes available for commercial use. RESULTS: In this paper, a straightforward approach for the selective detection of Pd2+ ions is proposed, which involves the design, synthesis, and utilization of a propargylated naphthalene-derived probe (E)-N'-((2-(prop-2-yn-1-yloxy)naphthalen-1-yl)methylene)benzohydrazide (NHP). The NHP probe exhibits sensitive dual-channel colorimetry and fluorescence Pd2+ detection over other tested metal ions. The detection process is performed through a catalytic depropargylation reaction, followed by an excited state intramolecular proton transfer (ESIPT) process, the detection limit is as low as 11.58 × 10-7 M under mild conditions. Interestingly, the resultant chemodosimeter adduct (E)-N'-((2-hydroxynaphthalen-1-yl)methylene)benzohydrazide (NHH) was employed for the consecutive detection of CN- ions, exhibiting an impressive detection limit of 31.79 × 10-8 M. Validation of both detection processes was achieved through 1H nuclear magnetic resonance and density functional theory calculations. For real-time applications of the NHP and NHH probes, smartphone-assisted detection, and intracellular detection of Pd2+ and CN- ions within HeLa cells were studied. SIGNIFICANCE: This research presents a novel naphthalene derivative for visually detecting environmentally toxic Pd2+ and CN- ions. The synthesized probe selectively binds to Pd2+, forming a chemodosimeter. It successfully detects CN- ions through colorimetry and fluorimetry, offering a low detection limit and quick response. Notably, it's the first naphthalene-based small molecule to serve as a dual probe for toxic analytes - palladium and cyanide. Moreover, it effectively detects Pd2+ and CN- intracellularly in cancer cells.


Fluorescent Dyes , Palladium , Palladium/chemistry , Humans , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Cyanides/analysis , Naphthalenes/chemistry , Naphthalenes/toxicity , HeLa Cells , Optical Imaging , Limit of Detection , Colorimetry/methods , Molecular Structure , Spectrometry, Fluorescence
4.
Anal Chem ; 96(16): 6467-6475, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38602368

Room temperature phosphorescence (RTP) nanoprobes play crucial roles in hypoxia imaging due to their high signal-to-background ratio (SBR) in the time domain. However, synthesizing RTP probes in aqueous media with a small size and high quantum yield remains challenging for intracellular hypoxic imaging up to present. Herein, aqueous RTP nanoprobes consisting of naphthalene anhydride derivatives, cucurbit[7]uril (CB[7]), and organosilicon are reported via supermolecular confined methods. Benefiting from the noncovalent confinement of CB[7] and hydrolysis reactions of organosilicon, such small-sized RTP nanoprobes (5-10 nm) exhibit inherent tunable phosphorescence (from 400 to 680 nm) with microsecond second lifetimes (up to ∼158.7 µs) and high quantum yield (up to ∼30%). The as-prepared RTP nanoprobes illustrate excellent intracellular hypoxia responsibility in a broad range from ∼0.1 to 21% oxygen concentrations. Compared to traditional fluorescence mode, the SBR value (∼108.69) of microsecond-range time-resolved in vitro imaging is up to 2.26 times greater in severe hypoxia (<0.1% O2), offering opportunities for precision imaging analysis in a hypoxic environment.


Heterocyclic Compounds, 2-Ring , Imidazoles , Imidazolidines , Macrocyclic Compounds , Humans , Imidazoles/chemistry , Silicon/chemistry , Nanoparticles/chemistry , Cell Hypoxia , Bridged-Ring Compounds/chemistry , Optical Imaging , Fluorescent Dyes/chemistry , Luminescent Measurements , Naphthalenes/chemistry , Time Factors , HeLa Cells
5.
Biochemistry (Mosc) ; 89(3): 407-416, 2024 Mar.
Article En | MEDLINE | ID: mdl-38648761

The synthesis of (p)ppGpp alarmones plays a vital role in the regulation of metabolism suppression, growth rate control, virulence, bacterial persistence, and biofilm formation. The (p)ppGpp alarmones are synthesized by proteins of the RelA/SpoT homolog (RSH) superfamily, including long bifunctional RSH proteins and small alarmone synthetases. Here, we investigated enzyme kinetics and dose-dependent enzyme inhibition to elucidate the mechanism of 4-(4,7-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yl)pentanoic acid (DMNP) action on the (p)ppGpp synthetases RelMsm and RelZ from Mycolicibacterium smegmatis and RelMtb from Mycobacterium tuberculosis. DMNP was found to inhibit the activity of RelMtb. According to the enzyme kinetics analysis, DMNP acts as a noncompetitive inhibitor of RelMsm and RelZ. Based on the results of molecular docking, the DMNP-binding site is located in the proximity of the synthetase domain active site. This study might help in the development of alarmone synthetase inhibitors, which includes relacin and its derivatives, as well as DMNP - a synthetic analog of the marine coral metabolite erogorgiaene. Unlike conventional antibiotics, alarmone synthetase inhibitors target metabolic pathways linked to the bacterial stringent response. Although these pathways are not essential for bacteria, they regulate the development of adaptation mechanisms. Combining conventional antibiotics that target actively growing cells with compounds that impede bacterial adaptation may address challenges associated with antimicrobial resistance and bacterial persistence.


Bacterial Proteins , Ligases , Mycobacterium tuberculosis , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Kinetics , Ligases/antagonists & inhibitors , Ligases/metabolism , Molecular Docking Simulation , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/drug effects , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/drug effects , Naphthalenes/pharmacology , Naphthalenes/chemistry , Diterpenes/pharmacology
6.
Nat Microbiol ; 9(5): 1325-1339, 2024 May.
Article En | MEDLINE | ID: mdl-38589468

Drug-resistant fungal infections pose a significant threat to human health. Dual-targeting compounds, which have multiple targets on a single pathogen, offer an effective approach to combat drug-resistant pathogens, although ensuring potent activity and high selectivity remains a challenge. Here we propose a dual-targeting strategy for designing antifungal compounds. We incorporate DNA-binding naphthalene groups as the hydrophobic moieties into the host defence peptide-mimicking poly(2-oxazoline)s. This resulted in a compound, (Gly0.8Nap0.2)20, which targets both the fungal membrane and DNA. This compound kills clinical strains of multidrug-resistant fungi including Candida spp., Cryptococcus neoformans, Cryptococcus gattii and Aspergillus fumigatus. (Gly0.8Nap0.2)20 shows superior performance compared with amphotericin B by showing not only potent antifungal activities but also high antifungal selectivity. The compound also does not induce antimicrobial resistance. Moreover, (Gly0.8Nap0.2)20 exhibits promising in vivo therapeutic activities against drug-resistant Candida albicans in mouse models of skin abrasion, corneal infection and systemic infection. This study shows that dual-targeting antifungal compounds may be effective in combating drug-resistant fungal pathogens and mitigating fungal resistance.


Antifungal Agents , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Animals , Mice , Humans , Drug Resistance, Multiple, Fungal , Disease Models, Animal , Cryptococcus neoformans/drug effects , Aspergillus fumigatus/drug effects , Candida albicans/drug effects , Naphthalenes/pharmacology , Naphthalenes/chemistry , Oxazoles/pharmacology , Oxazoles/chemistry , Candida/drug effects , Mycoses/drug therapy , Mycoses/microbiology
7.
Environ Pollut ; 349: 123965, 2024 May 15.
Article En | MEDLINE | ID: mdl-38614426

Hydrolysis, alcoholysis and ammonolysis are viable routes for the efficient degradation and recycling of polyethylene naphthalate (PEN) plastic waste. Various possible hydrolysis/alcoholysis/ammonolysis reaction pathways for the degradation mechanism of the ethylene naphthalate dimer were investigated using the density functional theory (DFT) B3P86/6-31++G(d,p). To determine the thermodynamic and kinetic parameters, geometric structure optimization and frequency calculation were performed on a range of intermediates, transition states, and products associated with the reaction. The calculation results show that the highest energy barrier of the main element reaction step in hydrolysis is about 169.0 kJ/mol, the lowest is about 151.0 kJ/mol for ammonolysis, and the second is about 155.0 kJ/mol for alcoholysis. The main hydrolysis products of the ethylene naphthalate dimer are 2,6-naphthalenedicarboxylic acid and ethylene glycol; the main products of alcoholysis are dimethyl naphthalene-2,6-dicarboxylate and ethylene glycol, and the main products of ammonolysis are naphthalene-2,6-dicarboxamide and ethylene glycol. Furthermore, in the process of ethylene naphthalate dimer hydrolysis/alcoholysis/ammonolysis, the decomposition reaction in the NH3 atmosphere is better than that in methanol, and the reaction in CH3OH is better than that in the H2O molecular environment, and the increase in reaction temperature can increase its spontaneity. Our study presents the molecular mechanism of PEN hydrolysis/alcoholysis/ammonolysis and provides a reference for studying the degradation of other plastic wastes.


Density Functional Theory , Hydrolysis , Naphthalenes/chemistry , Kinetics , Ethylenes/chemistry , Plastics/chemistry , Thermodynamics , Models, Chemical
8.
Phytochemistry ; 222: 114073, 2024 Jun.
Article En | MEDLINE | ID: mdl-38565420

Two undescribed cladosporol derivatives, cladosporols J-K (1-2), and three previously unreported spirobisnaphthalenes, urnucratins D-F (3-5), as well as eleven known cladosporols (6-16), were characterized from Cladosporium cladosporioides (Cladosporiaceae), a common plant pathogen isolated from the skin of Chinese toad. Cladosporols J-K (1-2) with a single double bond have been rarely reported, while urnucratins D-F (3-5) featured an unusual benzoquinone bisnaphthospiroether skeleton, contributing to an expanding category of undiscovered natural products. Their structures and absolute configurations were determined using extensive spectroscopic methods, including NMR, HRESIMS analyses, X-ray single crystal diffraction, as well as through experimental ECD analyses. Biological assays revealed that compounds 1 and 2 exhibited inhibitory activity against A549 cells, with IC50 values of 30.11 ± 3.29 and 34.32 ± 2.66 µM, respectively.


Cladosporium , Naphthalenes , Cladosporium/chemistry , Humans , Naphthalenes/chemistry , Naphthalenes/isolation & purification , Naphthalenes/pharmacology , Molecular Structure , Drug Screening Assays, Antitumor , A549 Cells , Spiro Compounds/chemistry , Spiro Compounds/isolation & purification , Spiro Compounds/pharmacology , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Dose-Response Relationship, Drug , Cell Proliferation/drug effects
9.
J Asian Nat Prod Res ; 26(5): 555-561, 2024 May.
Article En | MEDLINE | ID: mdl-38563409

A newly discovered trihydroxynaphthalenone derivative, epoxynaphthalenone (1) involving the condensation of ortho-hydroxyl groups into an epoxy structure, and a novel pyrone metabolite characterized as pyroneaceacid (2), were extracted from Talaromyces purpurpgenus, an endophytic fungus residing in Rhododendron molle. The structures of these compounds were elucidated through a comprehensive analysis of their NMR and HRESIMS data. The determination of absolute configurations was accomplished using electronic circular dichroism (ECD) calculations and CD spectra. Notably, these recently identified metabolites exhibited a moderate inhibitory activity against xanthine oxidase (XOD).


Pyrones , Talaromyces , Xanthine Oxidase , Talaromyces/chemistry , Molecular Structure , Pyrones/chemistry , Pyrones/pharmacology , Pyrones/isolation & purification , Xanthine Oxidase/antagonists & inhibitors , Nuclear Magnetic Resonance, Biomolecular , Naphthalenes/chemistry , Naphthalenes/isolation & purification , Naphthalenes/pharmacology , Circular Dichroism
10.
J Chem Inf Model ; 64(8): 3192-3204, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38500402

This work presents new experimental viscosity and density data for aromatic and polyaromatic compounds in binary and ternary pyrene, 1-methylnaphthalene, and dodecane mixtures. The lack of experimental viscosity data for these mixtures requires the development of a new database, which is vital for understanding the behavior of mixtures in more complex systems, such as asphaltenes and fuels. The mixtures proposed in this work have been measured over a temperature range of (293.15 to 343.15) K at atmospheric pressure. Several mixture compositions have been studied at these conditions: 1.0, 2.5, 5.0, 7.5, 10.0, 12.5, and 15.0% pyrene mass fraction. The concentration of pyrene correlates with an increase in the viscosity and density values. At the lowest temperature in binary mixtures, the corresponding values reach 4.4217 mPa·s for viscosity and 1.0447 × 103 kg·m-3 for density, respectively. In ternary mixtures, the introduction of dodecane leads to the lowest maximum values of 3.5555 mPa·s for viscosity and 1.0112 × 103 kg·m-3 for density at the same temperature. The experimental data have been employed for the specific modification of viscosity models. These modifications could facilitate the prediction of the viscosity of mixtures that are more complex than those presented in this work. Various viscosity models have been employed, such as Linear, Ratcliff and Khan, modified UNIFAC-Visco, and Krieger-Dougherty. The settings in the models used reliably reproduce the experiment reliably. However, the Ratcliff model agrees excellently with the experiment, having a low standard deviation (2.0%) compared to other models. Furthermore, a model based on the equation of state of Guo is proposed to predict the viscosity values by modifying the specific parameters and adjusting them to the mixtures proposed in this work. The results from this study are compared to previous work, where pyrene, toluene, and heptane mixtures were analyzed. In this case, we find that the decrease of aggregation grade in the present systems is predicted by the model fixed in this work.


Alkanes , Naphthalenes , Pyrenes , Temperature , Pyrenes/chemistry , Viscosity , Naphthalenes/chemistry , Alkanes/chemistry , Models, Chemical , Polycyclic Aromatic Hydrocarbons/chemistry
11.
Microb Pathog ; 190: 106627, 2024 May.
Article En | MEDLINE | ID: mdl-38521473

Overexpression of the efflux pump is a predominant mechanism by which bacteria show antimicrobial resistance (AMR) and leads to the global emergence of multidrug resistance (MDR). In this work, the inhibitory potential of library of dihydronapthyl scaffold-based imidazole derivatives having structural resemblances with some known efflux pump inhibitors (EPI) were designed, synthesized and evaluated against efflux pump inhibitor against overexpressing bacterial strains to study the synergistic effect of compounds and antibiotics. Out of 15 compounds, four compounds (Dz-1, Dz-3, Dz-7, and Dz-8) were found to be highly active. DZ-3 modulated the MIC of ciprofloxacin, erythromycin, and tetracycline by 128-fold each against 1199B, XU212 and RN4220 strains of S. aureus respectively. DZ-3 also potentiated tetracycline by 64-fold in E. coli AG100 strain. DZ-7 modulated the MIC of both tetracycline and erythromycin 128-fold each in S. aureus XU212 and S. aureus RN4220 strains. DZ-1 and DZ-8 showed the moderate reduction in MIC of tetracycline in E. coli AG100 only by 16-fold and 8-fold, respectively. DZ-3 was found to be the potential inhibitor of NorA as determined by ethidium bromide efflux inhibition and accumulation studies employing NorA overexpressing strain SA-1199B. DZ-3 displayed EPI activity at non-cytotoxic concentration to human cells and did not possess any antibacterial activity. Furthermore, molecular docking studies of DZ-3 was carried out in order to understand the possible binding sites of DZ-3 with the active site of the protein. These studies indicate that dihydronaphthalene scaffolds could serve as valuable cores for the development of promising EPIs.


Anti-Bacterial Agents , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Imidazoles , Microbial Sensitivity Tests , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins , Staphylococcus aureus , Staphylococcus aureus/drug effects , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Imidazoles/pharmacology , Imidazoles/chemistry , Humans , Drug Resistance, Multiple, Bacterial/drug effects , Ligands , Tetracycline/pharmacology , Naphthalenes/pharmacology , Naphthalenes/chemistry , Ciprofloxacin/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Erythromycin/pharmacology , Ethidium/metabolism , Drug Synergism
12.
Bioorg Chem ; 145: 107236, 2024 Apr.
Article En | MEDLINE | ID: mdl-38402796

In this study, 16 new compounds, six bibenzyls (1-6) and 10 naphthalenes (7-13), including three pairs of naphthalene enantiomers and three known compounds (14-16), were isolated from Dendrobium chrysanthum. Structurally, compounds 1-5 are previously undescribed dimeric bibenzyls, uniquely linked by unusual carbon bonds. The structures of the compounds were determined using spectroscopy and X-ray crystallography. The screening results indicated that 1, 2, and 5 showed remarkable lipid-lowering activities in FFA-induced HepG2 cells, with EC50 values ranging from 3.13 to 6.57 µM. Moreover, 1, 2, and 5 significantly decreased both the mRNA and protein levels of the target SREBP-1c, and 5 also reduced PPARα mRNA and protein levels. Therefore, 1, 2, and 5 are potential drugs against hepatic steatosis by targeting PPARα or SREBP-1c.


Bibenzyls , Dendrobium , Fatty Liver , Bibenzyls/pharmacology , Bibenzyls/chemistry , Dendrobium/chemistry , PPAR alpha , RNA, Messenger , Sterol Regulatory Element Binding Protein 1/genetics , Naphthalenes/chemistry , Naphthalenes/pharmacology
13.
Chemosphere ; 352: 141356, 2024 Mar.
Article En | MEDLINE | ID: mdl-38309603

Naphthalene, the most abundant polycyclic aromatic hydrocarbon in the atmosphere, significantly influences OH consumption and secondary organic aerosol (SOA) formation. Naphthoquinone (NQ) is a significant contributor to ring-retaining SOA from naphthalene degradation, impacting the redox properties and toxicity of ambient particles. However, inconsistencies persist regarding concentrations of its isomers, 1,2-NQ and 1,4-NQ. In present work, our theoretical investigation into naphthalene's reaction with OH and subsequent oxygenation unveils their role in SOA formation. The reaction kinetics of initial OH and subsequent O2 oxidation was extensively studied using high-level quantum chemical methods (DLPNO-CCSD(T)/aug-ccpVQZ//M052x-D3/6-311++G(d,p)) combined with RRKM/master equation simulations. The reactions mainly proceed through electrophilic addition and abstraction from the aromatic ring. The total rate coefficient of naphthalene + OH at 300 K and 1 atm from our calculation (7.2 × 10-12 cm3 molecule-1 s-1) agrees well with previous measurements (∼1 × 10-11 cm3 molecule-1 s-1). The computed branching ratios facilitate accurate product yield determination. The largest yield of 1-hydroxynaphthalen-1-yl radical (add1) producing the major precursor of RO2 is computed to be 93.8 % in the ambient environment. Our calculated total rate coefficient (5.2 × 10-16 cm3 molecule-1 s-1) for add1 + O2 closely matches that of limited experimental data (8.0 × 10-16 cm3 molecule-1 s-1). Peroxy radicals (RO2) generated from add1 + O2 include 4-cis/trans-(1-hydroxynaphthalen-1-yl)-peroxy radical (add1-4OOadd-cis/trans, 66.0 %/17.5 %), 2-cis/trans-(1-hydroxynaphthalen-1-yl)-peroxy radical (add1-2OOadd-cis/trans, 10.3 %/6.3 %). Regarding the debated predominance of 1,4-NQ (corresponding to the parent RO2, i.e., add1-4OOadd-cis/trans) and 1,2-NQ (corresponding to the parent RO2, i.e., add1-2OOadd-cis/trans) in the atmosphere, our findings substantiate the dominance of 1,4-NQ. This study also indicates potential weakening of 1,4-NQ's dominance due to competition from decomposition reactions of add1-4OOadd-cis/trans and add1-2OOadd-cis/trans. Precise reaction kinetics data are essential for characterizing SOA transformation derived from naphthalene and assessing their climatic impacts within modeling frameworks.


Naphthoquinones , Polycyclic Aromatic Hydrocarbons , Naphthalenes/chemistry , Physics , Kinetics , Oxidation-Reduction
14.
ACS Infect Dis ; 10(2): 489-499, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38175706

Human immunodeficiency virus 1 (HIV-1) therapeutic regimens consist of three or more drugs targeting different steps of the viral life cycle to limit the emergence of viral resistance. In line with the multitargeting strategy, here we conjugated a naphthalene diimide (NDI) moiety with a tetraazacycloalkane to obtain novel naphthalene diimide (NDI)-tetraazacycloalkane conjugates. The NDI inhibits the HIV-1 promoter activity by binding to LTR G-quadruplexes, and the tetraazacycloalkane mimics AMD3100, which blocks HIV entry into cells by interfering with the CXCR4 coreceptor. We synthesized, purified, and tested the metal-free NDI-tetraazacycloalkane conjugate and the two derived metal-organic complexes (MOCs) that incorporate Cu2+ and Zn2+. The NDI-MOCs showed enhanced binding to LTR G4s as assessed by FRET and CD assays in vitro. They also showed enhanced activity in cells where they dose-dependently reduced LTR promoter activity and inhibited viral entry only of the HIV-1 strain that exploited the CXCR4 coreceptor. The time of addition assay confirmed the dual targeting at the different HIV-1 steps. Our results indicate that the NDI-MOC conjugates can simultaneously inhibit viral entry, by targeting the CXCR4 coreceptor, and LTR promoter activity, by stabilizing the LTR G-quadruplexes. The approach of combining multiple targets in a single compound may streamline treatment regimens and improve the overall patient outcomes.


G-Quadruplexes , HIV-1 , Humans , HIV-1/genetics , Imides/pharmacology , Imides/chemistry , Imides/metabolism , Naphthalenes/pharmacology , Naphthalenes/chemistry
15.
J Mol Graph Model ; 126: 108620, 2024 01.
Article En | MEDLINE | ID: mdl-37722351

Synthetic cannabinoids, including some from the John W. Huffman (JWH) family, emerged on the drug scene around 2004 as "alternative marijuana," despite being considerably more potent than marijuana. Like Δ9-tetrahydrocannabinol (THC), the principal psychoactive ingredient in marijuana, synthetic cannabinoids have also been found to interact with cannabinoid receptors CB1 and CB2, found in the brain, immune system, and peripheral organs. The JWH compounds and other synthetic cannabinoids have become important subjects of research in the forensic science community due to their drug-abuse potential, undetectability under routine drug screening, and unpredictable toxicity. In this study, an active-state CB1 receptor model was used to assess the receptor-ligand interactions between the CB1 receptor and ligands from the JWH synthetic cannabinoid family, as well as some newly designed JWH-like virtual compounds, labeled as MGCS compounds, using docking, binding free-energy calculations (ΔG), and molecular dynamics simulations (MDs). The calculated ΔG revealed that the carbonyl group between the naphthalene and the indole, characteristic of the JWH family, and the length of the N-linked alkyl chain were two important structural characteristics that influenced the predicted CB1 binding affinity, especially as increasing the length of the alkyl chain led to better predicted binding affinity. MDs and per-residue-breakdown results showed that the designed MGCS compounds with a pentyl chain attached to the naphthalene moiety and selected JWH compounds formed stable and strong hydrophobic interactions with the key residues Phe170, Phe174, Phe177, Phe200, Phe268, and Trp279 of the CB1 receptor. Comprehension of these critical interactions can help forensic chemists predict the structure of undiscovered families of synthetic cannabinoids.


Cannabinoids , Cannabis , Hallucinogens , Humans , Receptor, Cannabinoid, CB1 , Cannabinoids/chemistry , Dronabinol , Naphthalenes/chemistry
16.
Eur J Med Chem ; 265: 116104, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38159482

The Keap1-Nrf2-ARE signaling pathway is an attractive therapeutic target for the prevention and treatment of oxidative stress-associated diseases by activating the cellular expression of cytoprotective enzymes and proteins. Small molecule inhibitors can directly disrupt the Keap1-Nrf2 protein-protein interaction (PPI), resulting in elevated levels of Nrf2 protein and subsequent stimulation of related antioxidant responses. Previously, we found that 1,4-bis(arylsulfonamido)benzene or naphthalene-N,N'-diacetic acid derivatives with an ether type C2-substituent on the benzene or naphthalene core exhibited potent inhibitory activities with IC50's in the submicromolar or nanomolar range. We here describe a more detailed structure-activity relationship study around the C2 substituents containing various polar linkers shedding new insight on their binding interactions with the Keap1 Kelch domain. The key observation from our findings is that the substituents at the C2-position of the benzene or naphthalene scaffold impact their inhibitory potencies in biochemical assays as well as activities in cell culture. The biochemical FP and TR-FRET assays revealed that the naphthalene derivatives 17b and 18 with an additional carboxylate at the C2 were the most active inhibitors against Keap1-Nrf2 PPI. In the cell-based assay, the two compounds were shown to be potent Nrf2 activators of the transcription of the Nrf2-dependent genes, such as HMOX2, GSTM3, and NQO1.


Benzene , NF-E2-Related Factor 2 , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Naphthalenes/pharmacology , Naphthalenes/chemistry , Protein Binding
17.
Molecules ; 28(21)2023 Oct 27.
Article En | MEDLINE | ID: mdl-37959711

G-quadruplexes (G4s) have been identified as a potential alternative chemotherapy target. A series of eight ß-amino acid derived naphthalenediimides (NDI) were screened against a series of oncogenic G4 sequences: c-KIT1, h-TELO, and TBA. Three sets of enantiomers were investigated to further our understanding of the effect of point chirality on G4 stabilisation. Enantioselective binding behaviour was observed with both c-KIT1 and h-TELO. Docking studies using GNINA and UV-vis titrations were employed to better understand this selective binding behaviour.


G-Quadruplexes , Amino Acids , DNA/chemistry , Naphthalenes/pharmacology , Naphthalenes/chemistry , Circular Dichroism
18.
Chem Commun (Camb) ; 59(94): 13951-13961, 2023 Nov 23.
Article En | MEDLINE | ID: mdl-37937399

Aggregation of amphiphilic polymers in block-selective solvents produces different nanostructures, which have been studied extensively for wide-ranging applications. Nevertheless, such immiscibility-driven aggregation does not endow them with the desired structural precision, predictability or surface functional group exposure, which significantly impact their functional applications. More recently, biomimetic folded structures of synthetic macromolecules (mostly oligomers) have come to the fore, but such studies have been limited to probe the secondary structures. In this article, we have collated hierarchical structures of foldamers, especially highlighting our recent contribution to the field of chain-folding regulated assembly of segmented polyurethanes (PUs) and their functional applications. A series of such PUs have been discussed, which contain a segmented hydrocarbon backbone and alternately placed pendant solvophilic groups. In either water or highly non-polar solvents (TCE, MCH), depending on the nature of the pendant group, they exhibit folded structures stabilized by intra-chain H-bonding. Hierarchical assembly of such folded chains by inter-chain H-bonding and/or π-stacking leads to the formation of well-defined nanostructures with functional applications ranging from organic optoelectronics to biomaterials. For example, a segmented PU with appended naphthalene-diimide (NDI) chromophores showed a pleated structure in MCH, which helped in organization of the NDI chromophores within π-stacking distance. Such folded polymer chains eventually produced nanotubular structures with excellent electron mobility. They also showed efficient intercalation of the pyrene (Py) donor by NDI-Py charge-transfer interaction and in this case the mixed nanotubular structure exhibited prominent room-temperature ferroelectricity. On the other hand, having cationic functionalities as the pendant groups such chain-folding regulated assembly produced unilamellar polymersomes with excellent antibacterial activity with very low minimum inhibitory concentrations (<10 µg mL-1). Replacing the pendant amine functionality with sulphate groups made these polyurethanes highly potent antiviral materials. In the absence of the alternating connectivity of the solvophobic and solvophilic segments or rigid hydrocarbon backbone, such folding propensity is destroyed, leading to structural collapse. While significant efforts have been made in correlating primary structures of wide-ranging polymers with their functional applications, this article demonstrates the direct correlation between the secondary structures of polymers and their functional properties.


Polymers , Polyurethanes , Humans , Polymers/chemistry , Solvents/chemistry , Naphthalenes/chemistry , Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Suppuration
19.
Biochemistry ; 62(19): 2841-2853, 2023 10 03.
Article En | MEDLINE | ID: mdl-37695675

In addition to amide hydrogen bonds and the hydrophobic effect, interactions involving π-bonded sp2 atoms of amides, aromatics, and other groups occur in protein self-assembly processes including folding, oligomerization, and condensate formation. These interactions also occur in aqueous solutions of amide and aromatic compounds, where they can be quantified. Previous analysis of thermodynamic coefficients quantifying net-favorable interactions of amide compounds with other amides and aromatics revealed that interactions of amide sp2O with amide sp2N unified atoms (presumably C═O···H-N hydrogen bonds) and amide/aromatic sp2C (lone pair π, n-π*) are particularly favorable. Sp3C-sp3C (hydrophobic), sp3C-sp2C (hydrophobic, CH-π), sp2C-sp2C (hydrophobic, π-π), and sp3C-sp2N interactions are favorable, sp2C-sp2N interactions are neutral, while sp2O-sp2O and sp2N-sp2N self-interactions and sp2O-sp3C interactions are unfavorable. Here, from determinations of favorable effects of 14 amides on naphthalene solubility at 10, 25, and 45 °C, we dissect amide-aromatic interaction free energies into enthalpic and entropic contributions and find these vary systematically with amide composition. Analysis of these results yields enthalpic and entropic contributions to intrinsic strengths of interactions of amide sp2O, sp2N, sp2C, and sp3C unified atoms with aromatic sp2C atoms. For each interaction, enthalpic and entropic contributions have the same sign and are much larger in magnitude than the interaction free energy itself. The amide sp2O-aromatic sp2C interaction is enthalpy-driven and entropically unfavorable, consistent with direct chemical interaction (e.g., lone pair-π), while amide sp3C- and sp2C-aromatic sp2C interactions are entropy-driven and enthalpically unfavorable, consistent with hydrophobic effects. These findings are relevant for interactions involving π-bonded sp2 atoms in protein processes.


Amides , Water , Amides/chemistry , Entropy , Water/chemistry , Thermodynamics , Proteins/chemistry , Naphthalenes/chemistry
20.
Nat Commun ; 14(1): 4002, 2023 Jul 06.
Article En | MEDLINE | ID: mdl-37414824

The ability to deliver electrons is vital for dye-based photocatalysts. Conventionally, the aromatic stacking-based charge-transfer complex increases photogenerated electron accessibility but decreases the energy of excited-state dyes. To circumvent this dilemma, here we show a strategy by tuning the stacking mode of dyes. By decorating naphthalene diimide with S-bearing branches, the S···S contact-linked naphthalene diimide string is created in coordination polymer, thereby enhancing electron mobility while simultaneously preserving competent excited-state reducing power. This benefit, along with in situ assembly between naphthalene diimide strings and exogenous reagent/reactant, improves the accessibility of short-lived excited states during consecutive photon excitation, resulting in greater efficiency in photoinduced electron-transfer activation of inert bonds in comparison to other coordination polymers with different dye-stacking modes. This heterogeneous approach is successfully applied in the photoreduction of inert aryl halides and the successive formation of CAr-C/S/P/B bonds with potential pharmaceutical applications.


Chalcogens , Inorganic Chemicals , Polymers/chemistry , Electron Transport , Naphthalenes/chemistry
...